LH1562

DESCRIPTION

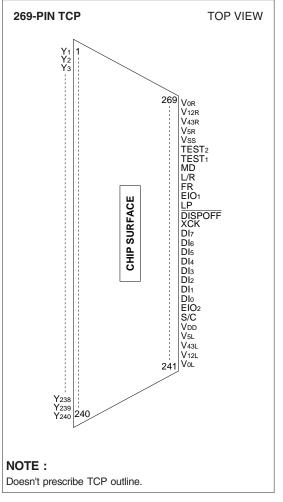
The LH1562 is a 240-output segment/common driver IC suitable for driving large/medium scale dot matrix LCD panels, and is used in personal computers/work stations. Through the use of SST (Super Slim TCP) technology, it is ideal for substantially decreasing the size of the frame section of the LCD module. The LH1562 is good both as a segment driver and a common driver, and it can create a low power consuming, highresolution LCD.

FEATURES

- Number of LCD drive outputs : 240
- Supply voltage for LCD drive : +15.0 to +42.0 V
- Supply voltage for the logic system : +2.5 to +5.5 V
- Low power consumption
- Low output impedance
- Package : 269-pin TCP (Tape Carrier Package)

(Segment mode)

- Shift clock frequency
 - -20 MHz (MAX.) : VDD = $+5.0\pm0.5$ V
 - 15 MHz (MAX.) : VDD = +3.0 to +4.5 V
 - 12 MHz (MAX.) : VDD = +2.5 to +3.0 V
- Adopts a data bus system
- 4-bit/8-bit parallel input modes are selectable with a mode (MD) pin
- · Automatic transfer function of an enable signal
- Automatic counting function which, in the chip selection mode, causes the internal clock to be stopped by automatically counting 240 bits of input data
- Line latch circuits are reset when DISPOFF active

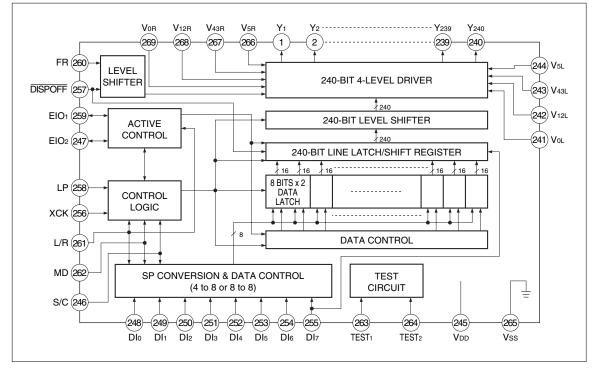

(Common mode)

- Shift clock frequency : 4 MHz (MAX.)
- Built-in 240-bit bi-directional shift register (divisible into 120 bits x 2)

240-output LCD Segment/Common Driver IC

- Available in a single mode (240-bit shift register) or in a dual mode (120-bit shift register x 2)
- ① Y1→Y240 Single mode
- ② Y240→Y1 Single mode
- ③ Y1→Y120, Y121→Y240 Dual mode
- ④ Y240→Y121, Y120→Y1 Dual mode
 - The above 4 shift directions are pin-selectable
- Shift register circuits are reset when DISPOFF active

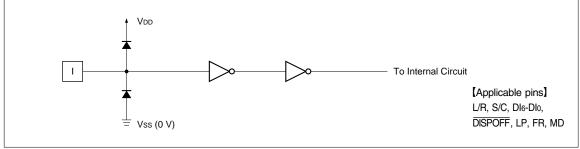
PIN CONNECTIONS

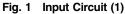


In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

PIN DESCRIPTION

PIN NO.	SYMBOL	I/O	DESCRIPTION					
1 to 240	Y1-Y240	0	LCD drive output					
241, 269	Vol, Vor	-	Power supply for LCD drive					
242, 268	V12L, V12R	-	Power supply for LCD drive					
243, 267	V43L, V43R	_	Power supply for LCD drive					
244, 266	V5L, V5R	-	Power supply for LCD drive					
245	Vdd	-	Power supply for logic system (+2.5 to +5.5 V)					
246	S/C	I	Segment mode/common mode selection					
247, 259	EIO2, EIO1	I/O	Input/output for chip selection at segment mode/					
247, 259		1/0	Shift data input/output for shift register at common mode					
248 to 254	DI0-DI6	I	Display data input at segment mode					
255	DI7	I	Display data input at segment mode/Dual mode data input at common mode					
256	XCK	I	Clock input for taking display data at segment mode					
257	DISPOFF	I	Control input for output of non-select level					
258	LP	1	Latch pulse input for display data at segment mode/					
200	LP	I	Shift clock input for shift register at common mode					
260	FR	I	AC-converting signal input for LCD drive waveform					
061	L/R	1	Input for selecting the reading direction of display data at segment mode/					
261	L/R	Į	Input for selecting the shift direction of shift register at common mode					
262	MD	I	Mode selection input					
263, 264	TEST1, TEST2	I	Test mode selection input					
265	Vss	_	Ground (0 V)					


BLOCK DIAGRAM



FUNCTIONAL OPERATIONS OF EACH BLOCK

BLOCK	FUNCTION
	In case of segment mode, controls the selection or non-selection of the chip.
	Following an LP signal input, and after the chip selection signal is input, a selection
Active Control	signal is generated internally until 240 bits of data have been read in.
Active Control	Once data input has been completed, a selection signal for cascade connection is
	output, and the chip is non-selected.
	In case of common mode, controls the input/output data of bi-directional pins.
SP Conversion	In case of segment mode, keeps input data which are 2 clocks of XCK at 4-bit parallel
& Data Control	input mode in latch circuit, or keeps input data which are 1 clock of XCK at 8-bit parallel
	input mode in latch circuit; after that they are put on the internal data bus 8 bits at a time.
	In case of segment mode, selects the state of the data latch which reads in the data bus
Data Latch Control	signals. The shift direction is controlled by the control logic. For every 16 bits of data
	read in, the selection signal shifts one bit based on the state of the control circuit.
	In case of segment mode, latches the data on the data bus. The latch state of each LCD
Data Latch	drive output pin is controlled by the control logic and the data latch control; 240 bits of
	data are read in 30 sets of 8 bits.
	In case of segment mode, all 240 bits which have been read into the data latch are
Line Latch/	simultaneously latched at the falling edge of the LP signal, and are output to the level
Shift Register	shifter block. In case of common mode, shifts data from the data input pin at the falling
	edge of the LP signal.
Level Shifter	The logic voltage signal is level-shifted to the LCD drive voltage level, and is output to
	the driver block.
4-Level Driver	Drives the LCD drive output pins from the line latch/shift register data, and selects one of
	4 levels (V0, V12, V43, or V5) based on the S/C, FR and DISPOFF signals.
	Controls the operation of each block. In case of segment mode, when an LP signal has
	been input, all blocks are reset and the control logic waits for the selection signal output
Control Logic	from the active control block. Once the selection signal has been output, operation of the
	data latch and data transmission is controlled, 240 bits of data are read in, and the chip
	is non-selected. In case of common mode, controls the direction of data shift.
Test Circuit	The circuit for testing. During normal operation, it isn't activated.

INPUT/OUTPUT CIRCUITS

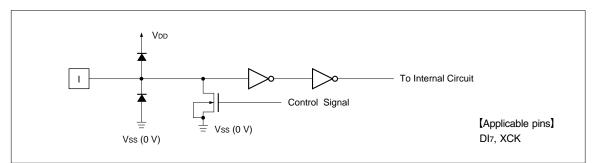


Fig. 2 Input Circuit (2)

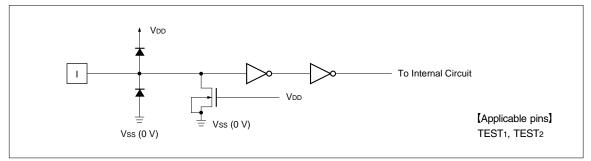


Fig. 3 Input Circuit (3)

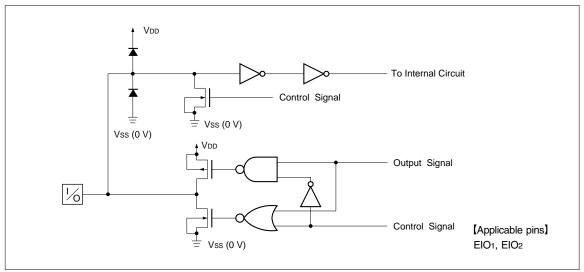


Fig. 4 Input/Output Circuit

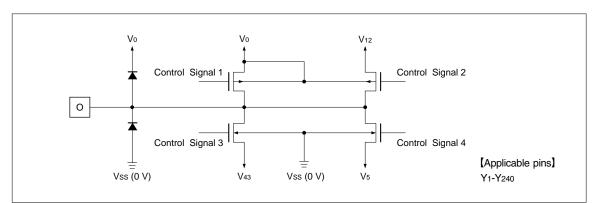


Fig. 5 LCD Drive Output Circuit

FUNCTIONAL DESCRIPTION

Pin Functions

(Segment mode)

SYMBOL	FUNCTION
Vdd	Logic system power supply pin, connected to +2.5 to +5.5 V.
Vss	Ground pin, connected to 0 V.
	Bias power supply pins for LCD drive voltage
Vol, Vor	Normally use the bias voltages set by a resistor divider.
V12L, V12R	• Ensure that voltages are set such that Vss \leq V5 < V43 < V12 < V0.
V43L, V43R	• ViL and ViR (i = 0, 12, 43, 5) must connect to an external power supply, and supply regular
V5L, V5R	voltage which is assigned by specification for each power pin.
	Input pins for display data
	 In 4-bit parallel input mode, input data into the 4 pins, DI3-DI0.
DI7-DI0	Connect DI7-DI4 to Vss or VDD.
DI7-DI0	 In 8-bit parallel input mode, input data into the 8 pins, DI7-DI0.
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
	PINS" in Functional Operations.
ХСК	Clock input pin for taking display data
XUN	 Data is read at the falling edge of the clock pulse.
LP	Latch pulse input pin for display data
	 Data is latched at the falling edge of the clock pulse.
	Input pin for selecting the reading direction of display data
	• When set to Vss level "L", data is read sequentially from Y240 to Y1.
L/R	• When set to VDD level "H", data is read sequentially from Y1 to Y240.
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
	PINS" in Functional Operations.
	Control input pin for output of non-select level
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and
	controls the LCD drive circuit.
	• When set to Vss level "L", the LCD drive output pins (Y1-Y240) are set to level V5.
DISPOFF	• When set to "L", the contents of the line latch are reset, but the display data are read in the
DISPOFF	data latch regardless of the condition of DISPOFF. When the DISPOFF function is canceled,
	the driver outputs non-select level (V12 or V43), then outputs the contents of the data latch at
	the next falling edge of the LP. At that time, if DISPOFF removal time does not correspond
	to what is shown in AC characteristics, it can not output the reading data correctly.
	• Table of truth values is shown in "TRUTH TABLE" in Functional Operations.

SYMBOL	FUNCTION				
	AC signal input pin for LCD drive waveform				
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and				
	controls the LCD drive circuit.				
FR	Normally it inputs a frame inversion signal.				
	• The LCD drive output pins' output voltage levels can be set using the line latch output				
	signal and the FR signal.				
	• Table of truth values is shown in "TRUTH TABLE" in Functional Operations.				
	Mode selection pin				
	• When set to Vss level "L", 8-bit parallel input mode is set.				
MD	• When set to VDD level "H", 4-bit parallel input mode is set.				
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT				
	PINS" in Functional Operations.				
S/C	Segment mode/common mode selection pin				
3/0	When set to VDD level "H", segment mode is set.				
	Input/output pins for chip selection				
	• When L/R input is at Vss level "L", EIO1 is set for output, and EIO2 is set for input.				
	• When L/R input is at VDD level "H", EIO1 is set for input, and EIO2 is set for output.				
EIO1, EIO2	• During output, set to "H" while $LP \cdot \overline{XCK}$ is "H" and after 240 bits of data have been read, set				
	to "L" for one cycle (from falling edge to falling edge of XCK), after which it returns to "H".				
	• During input, the chip is selected while EI is set to "L" after the LP signal is input. The				
	chip is non-selected after 240 bits of data have been read.				
TEST1	Test mode selection pins				
TEST2	During normal operation, fix to Vss level "L".				
	LCD drive output pins				
Y1-Y240	\bullet Corresponding directly to each bit of the data latch, one level (V0, V12, V43, or V5) is				
	selected and output.				
	• Table of truth values is shown in "TRUTH TABLE" in Functional Operations.				

(Common mode)

SYMBOL	FUNCTION
Vdd	Logic system power supply pin, connected to +2.5 to +5.5 V.
Vss	Ground pin, connected to 0 V.
V0L, V0R V12L, V12R V43L, V43R V5L, V5R	 Bias power supply pins for LCD drive voltage Normally use the bias voltages set by a resistor divider. Ensure that voltages are set such that Vss ≤ V5 < V43 < V12 < V0. ViL and ViR (i = 0, 12, 43, 5) must connect to an external power supply, and supply regular voltage which is assigned by specification for each power pin.
EIO1	 Shift data input/output pin for bi-directional shift register Output pin when L/R is at Vss level "L", input pin when L/R is at VDD level "H". When L/R = H, ElO1 is used as input pin, it will be pulled down. When L/R = L, ElO1 is used as output pin, it won't be pulled down. Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS" in Functional Operations.
EIO2	 Shift data input/output pin for bi-directional shift register Input pin when L/R is at Vss level "L", output pin when L/R is at Vbb level "H". When L/R = L, ElO2 is used as input pin, it will be pulled down. When L/R = H, ElO2 is used as output pin, it won't be pulled down. Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS" in Functional Operations.
LP	Shift clock pulse input pin for bi-directional shift registerData is shifted at the falling edge of the clock pulse.
L/R	 Input pin for selecting the shift direction of bi-directional shift register Data is shifted from Y₂₄₀ to Y₁ when set to Vss level "L", and data is shifted from Y₁ to Y₂₄₀ when set to V_{DD} level "H". Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS" in Functional Operations.
DISPOFF	 Control input pin for output of non-select level The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the LCD drive circuit. When set to Vss level "L", the LCD drive output pins (Y1-Y240) are set to level V5. When set to "L", the contents of the shift register are reset to not reading data. When the DISPOFF function is canceled, the driver outputs non-select level (V12 or V43), and the shift data is read at the next falling edge of the LP. At that time, if DISPOFF removal time does not correspond to what is shown in AC characteristics, the shift data is not read correctly. Table of truth values is shown in "TRUTH TABLE" in Functional Operations.

SYMBOL	FUNCTION
	AC signal input pin for LCD drive waveform
	• The input signal is level-shifted from logic voltage level to LCD drive voltage level, and
	controls the LCD drive circuit.
FR	Normally it inputs a frame inversion signal.
	• The LCD drive output pins' output voltage levels can be set using the shift register output signal and the FR signal.
	• Table of truth values is shown in "TRUTH TABLE" in Functional Operations.
	Mode selection pin
	• When set to Vss level "L", single mode operation is selected; when set to Vbb level "H",
MD	dual mode operation is selected.
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
	PINS" in Functional Operations.
	Dual mode data input pin
	• According to the data shift direction of the data shift register, data can be input starting
	from the 121st bit.
DI7	When the chip is used in dual mode, DI7 will be pulled down.
	When the chip is used in single mode, DI7 won't be pulled down.
	Refer to "RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT
	PINS" in Functional Operations.
S/C	Segment mode/common mode selection pin
0,0	When set to Vss level "L", common mode is set.
DI6-DI0	Not used
BI0 BI0	Connect DI6-DI0 to Vss or VDD, avoiding floating.
хск	Not used
	XCK is pulled down in common mode, so connect to Vss or open.
TEST1	Test mode selection pins
TEST2	During normal operation, fix to Vss level "L".
	LCD drive output pins
Y1-Y240	• Corresponding directly to each bit of the shift register, one level (V0, V12, V43, or V5) is
	selected and output.
	• Table of truth values is shown in "TRUTH TABLE" in Functional Operations.

Functional Operations TRUTH TABLE

(Segment Mode)

FR	LATCH DATA	DISPOFF	LCD DRIVE OUTPUT VOLTAGE LEVEL (Y1-Y240)
L	L	Н	V43
L	Н	Н	V5
Н	L	Н	V12
Н	Н	Н	Vo
Х	Х	L	V5

(Common Mode)

FR	LATCH DATA	DISPOFF	LCD DRIVE OUTPUT VOLTAGE LEVEL (Y1-Y240)
L	L	Н	V43
L	Н	Н	Vo
Н	L	Н	V12
Н	Н	Н	V5
Х	Х	L	V5

NOTES :

+ Vss \leq V5 < V43 < V12 < V0, L : Vss (0 V), H : Vdd (+2.5 to +5.5 V), X : Don't care

"Don't care" should be fixed to "H" or "L", avoiding floating.
 There are two kinds of power supply (logic level voltage and LCD drive voltage) for the LCD driver.
 Supply regular voltage which is assigned by specification for each power pin.

RELATIONSHIP BETWEEN THE DISPLAY DATA AND LCD DRIVE OUTPUT PINS

(Segment Mode)

(a) 4-bit Parallel Input Mode

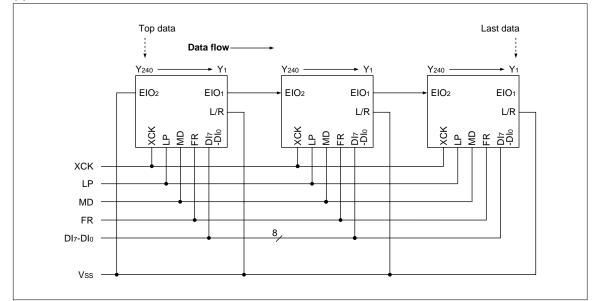
МБ	MD L/R	EIO1	EIO ₂	DATA	NUMBER OF CLOCKS						
	EIU1	EIO2	INPUT	60 CLOCK	59 CLOCK	58 CLOCK		3 CLOCK	2 CLOCK	1 CLOCK	
				Dlo	Y1	Y5	Y9		Y229	Y233	Y237
Н		Output	Input	DI1	Y2	Y6	Y10		Y230	Y234	Y238
				DI2	Y3	Y7	Y11		Y231	Y235	Y239
				DIз	Y4	Y8	Y12		Y232	Y236	Y240
		lawst		Dlo	Y240	Y236	Y232		Y12	Y8	Y4
Н				DI1	Y239	Y235	Y231		Y11	Y7	Y3
нн	Input	put Output	DI2	Y238	Y234	Y230		Y10	Y6	Y2	
				DIз	Y237	Y233	Y229		Y9	Y5	Y 1

(b) 8-bit Parallel Input Mode

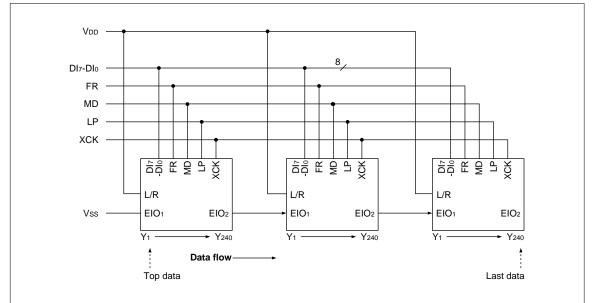
MD	L/R	EIO1	EIO ₂	DATA			NUMB	ER OF CI	LOCKS		
		EIU1		INPUT	30 CLOCK	29 CLOCK	28 CLOCK		3 CLOCK	2 CLOCK	1 CLOCK
				Dlo	Y1	Y9	Y17		Y217	Y225	Y233
			DI1	Y2	Y10	Y18		Y218	Y226	Y234	
				Dl2	Y3	Y11	Y19		Y219	Y227	Y235
		Output	Innut	DIз	Y4	Y12	Y20		Y220	Y228	Y236
	L	Output	Input	DI4	Y5	Y13	Y21		Y221	Y229	Y237
				DI5	Y6	Y14	Y22		Y222	Y230	Y238
				DI6	Y7	Y15	Y23		Y223	Y231	Y239
				DI7	Y8	Y16	Y24		Y224	Y232	Y240
		Input		Dlo	Y240	Y232	Y224		Y24	Y16	Y8
			Output	DI1	Y239	Y231	Y223		Y23	Y15	Y7
				Dl2	Y238	Y230	Y222		Y22	Y14	Y6
	н			DIз	Y237	Y229	Y221		Y21	Y13	Y5
				DI4	Y236	Y228	Y220		Y20	Y12	Y4
				DI5	Y235	Y227	Y219		Y19	Y11	Y3
				DI6	Y234	Y226	Y218		Y18	Y10	Y2
				DI7	Y233	Y225	Y217		Y17	Y9	Y1

(Common Mode)

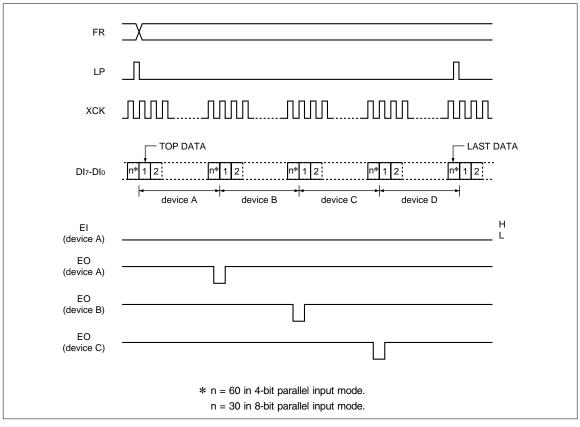
MD	L/R	DATA TRANSFER DIRECTION	EIO1	EIO ₂	DI7	
L	L	$Y_{240} \rightarrow Y_1$	Output	Input	Х	
(Single)	Н	$Y_1 \rightarrow Y_{240}$	Input	Output	Х	
	L	Y240 → Y121	Output	Input	Input	
н		$Y_{120} \rightarrow Y_1$	Output			
(Dual)	Ц	$Y_1 \rightarrow Y_{120}$	Input	Quitout	Input	
	н	$Y_{121} \rightarrow Y_{240}$	Input	Output	Input	

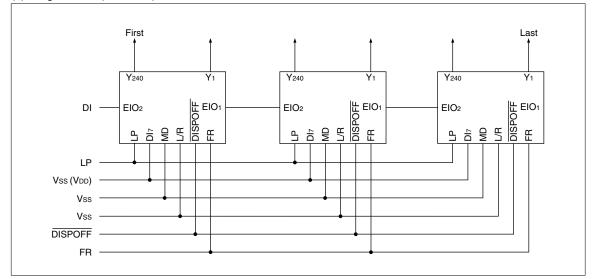

NOTES :

• L : Vss (0 V), H : VDD (+2.5 to +5.5 V), X : Don't care

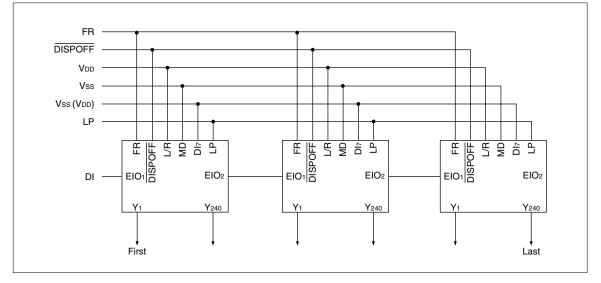

• "Don't care" should be fixed to "H" or "L", avoiding floating.

CONNECTION EXAMPLES OF PLURAL SEGMENT DRIVERS

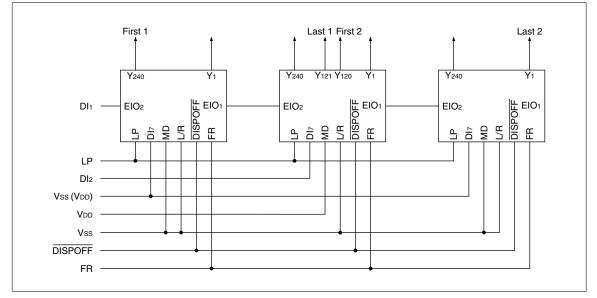

(a) When L/R = "L"

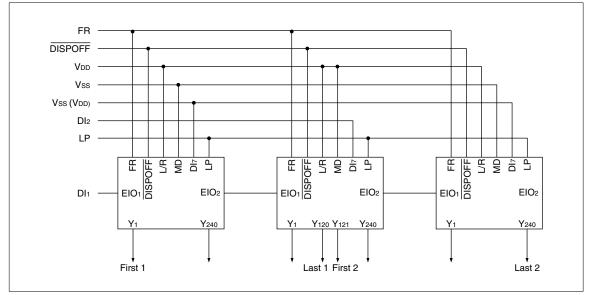


TIMING CHART OF 4-DEVICE CASCADE CONNECTION OF SEGMENT DRIVERS



CONNECTION EXAMPLES FOR PLURAL COMMON DRIVERS

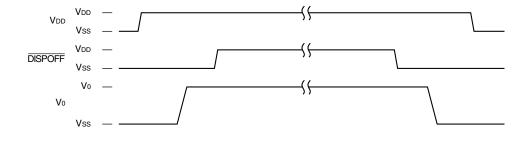

(a) Single Mode (L/R = "L")


(b) Single Mode (L/R = "H")

(c) Dual Mode (L/R = "L")

(d) Dual Mode (L/R = "H")

PRECAUTIONS


Precautions when connecting or disconnecting the power supply

This IC has a high-voltage LCD driver, so it may be permanently damaged by a high current which may flow if voltage is supplied to the LCD drive power supply while the logic system power supply is floating. The details are as follows.

- When connecting the power supply, connect the LCD drive power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LCD drive power.
- It is advisable to connect the serial resistor (50 to 100 Ω) or fuse to the LCD drive power Vo of the system as a current limiter. Set up a suitable value of the resistor in consideration of the display grade.

And when connecting the logic power supply, the logic condition of this IC inside is insecure. Therefore connect the LCD drive power supply after resetting logic condition of this IC inside on DISPOFF function. After that, cancel the DISPOFF function after the LCD drive power supply has become stable. Furthermore, when disconnecting the power, set the LCD drive output pins to level V₅ on DISPOFF function. Then disconnect the logic system power after disconnecting the LCD drive power.

When connecting the power supply, follow the recommended sequence shown here.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT	NOTE
Supply voltage (1)	Vdd	Vdd	-0.3 to +7.0	V	
	Vo	Vol, Vor	-0.3 to +45.0	V	
Supply voltage (2)	V12	V12L, V12R	-0.3 to V0 + 0.3	V	
Supply voltage (2)	V43	V43L, V43R	-0.3 to V0 + 0.3	V	1.0
	V5	V5L, V5R	-0.3 to V0 + 0.3	V	1, 2
		DI7-DI0, XCK, LP, L/R, FR,			
Input voltage	Vi	MD, S/C, EIO1, EIO2,	-0.3 to VDD + 0.3	V	
		DISPOFF, TEST1, TEST2			
Storage temperature	Tstg		-45 to +125	°C	

NOTES :

1. TA = +25 °C

2. The maximum applicable voltage on any pin with respect to Vss (0 V).

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage (1)	Vdd	VDD	+2.5		+5.5	V	12
Supply voltage (2)	Vo	Vol, Vor	+15.0		+42.0	V	1, 2
Operating temperature	TOPR		-20		+85	°C	

NOTES :

1. The applicable voltage on any pin with respect to Vss (0 V).

2. Ensure that voltages are set such that Vss \leq V5 < V43 < V12 < V0.

ELECTRICAL CHARACTERISTICS

DC Characteristics

(Segment Mode)	(Vss = V	$V_5 = 0 V, V_{DD} = -$	+2.5 to +5.5 V, Vo = +1	5.0 to +	42.0 V,	TOPR =	-20 to	+85 °C)

PARAMETER	SYMBOL	CON	DITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	Vı∟			DI7-DI0, XCK, LP, L/R,			0.2Vdd	V	
Input "High" voltage	Vін			FR, MD, S/C, EIO1, EIO2, DISPOFF	0.8Vdd			V	
Output "Low" voltage	Vol	IOL = ·	+0.4 mA				+0.4	V	
Output "High" voltage	Vон	Юн = -	–0.4 mA	EIO1, EIO2	Vdd - 0.4			V	
Input lookago ourront	ILIL	Vi :	= Vss	DI7-DI0, XCK, LP, L/R, FR, MD, S/C, EIO1,			-10.0	μA	
Input leakage current	Іцн	VI =	= Vdd	$EIO_2, \overline{DISPOFF}$			+10.0	μA	
	Ron		V0 = 40 V			1.0	1.5		
Output resistance		$ \Delta V_{ON} $ $V_0 = 30 V$	Y1-Y240		1.5	2.0	kΩ		
		= 0.5 V	V0 = 20 V			2.0	2.5		
Standby current	ISTB			Vss			75.0	μA	1
Supply current (1) (Non-selection)	IDD1			VDD			2.0	mA	2
Supply current (2) (Selection)	IDD2			VDD			12.0	mA	3
Supply current (3)	lo			Vol, Vor			1.5	mA	4

NOTES :

- 1. VDD = +5.0 V, V0 = +42.0 V, V1 = VSS.
- 2. VDD = +5.0 V, Vo = +42.0 V, fxck = 20 MHz, no-load, EI = VDD.

The input data is turned over by data taking clock (4-bit parallel input mode).

3. VDD = +5.0 V, Vo = +42.0 V, fxck = 20 MHz, no-load, EI = Vss.

The input data is turned over by data taking clock (4-bit parallel input mode).

4. VDD = +5.0 V, V0 = +42.0 V, fxck = 20 MHz, fLP = 41.6 kHz, fFR = 80 Hz, no-load.

The input data is turned over by data taking clock (4-bit parallel input mode).

(Common Mode) (Vss = V5 = 0 V, VDD = +2.5 to +5.5 V, V0 = +15.0 to +42.0 V, TOPR = -20 to +85 °C)									
PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE	
Input "Low" voltage	Vi∟		DI7-DI0, XCK, LP, L/R,			0.2Vdd	V		
Input "High" voltage	Vін		FR, MD, S/C, EIO1, EIO2, DISPOFF	0.8VDD			V		
Output "Low" voltage	Vol	IoL = +0.4 mA				+0.4	V		
Output "High" voltage	Vон	Iон = -0.4 mA	EIO1, EIO2	Vdd - 0.4			V		
Input leakage current	ILIL	VI = VSS	DI7-DI0, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2, DISPOFF			-10.0	μA		
	Іцн	VI = VDD	DI6-DI0, LP, L/R, FR, MD, S/C, DISPOFF			+10.0	μA		
Input pull-down current	IPD	VI = VDD	DI7, XCK, EIO1, EIO2			100.0	μA		
		V0 = 40 V			1.0	1.5			
Output resistance	Ron	ΔV_{ON} $V_0 = 30 V$	Y1-Y240		1.5	2.0	kΩ		
		= 0.5 V Vo = 20 V			2.0	2.5			
Standby current	Istb		Vss			75.0	μA	1	
Supply current (1)	IDD		Vdd			120.0	μA	2	
Supply current (2)	lo		Vol, Vor			240.0	μA	2	

NOTES :

1. VDD = +5.0 V, V0 = +42.0 V, VI = VSS

2. VDD = +5.0 V, Vo = +42.0 V, fLP = 41.6 kHz, fFR = 80 Hz, 1/480 duty operation, no-load.

AC Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Shift clock period	twcĸ	tR, tF ≤ 10 ns	50			ns	1
Shift clock "H" pulse width	twcкн		15			ns	
Shift clock "L" pulse width	tWCKL		15			ns	
Data setup time	tDS		10			ns	
Data hold time	tDH		12			ns	
Latch pulse "H" pulse width	tWLPH		15			ns	
Shift clock rise to latch pulse rise time	tLD		0			ns	
Shift clock fall to latch pulse fall time	tsL		30			ns	
Latch pulse rise to shift clock rise time	tLS		25			ns	
Latch pulse fall to shift clock fall time	tlн		25			ns	
Enable setup time	ts		10			ns	
Input signal rise time	tR				50	ns	2
Input signal fall time	tF				50	ns	2
DISPOFF removal time	tSD		100			ns	
DISPOFF "L" pulse width	tWDL		1.2			μs	
Output delay time (1)	tD	C∟ = 15 pF			30	ns	
Output delay time (2)	tPD1, tPD2	C∟ = 15 pF			1.2	μs	
Output delay time (3)	tPD3	CL = 15 pF			1.2	μs	

NOTES :

1. Takes the cascade connection into consideration.

2. (twck – twckh – twckL)/2 is maximum in the case of high speed operation.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Shift clock period	twcĸ	tR, tF \leq 10 ns	66			ns	1
Shift clock "H" pulse width	twckh		23			ns	
Shift clock "L" pulse width	twckl		23			ns	
Data setup time	tDS		15			ns	
Data hold time	tDH		23			ns	
Latch pulse "H" pulse width	twlph		30			ns	
Shift clock rise to latch pulse rise time	tLD		0			ns	
Shift clock fall to latch pulse fall time	tsL		50			ns	
Latch pulse rise to shift clock rise time	tLS		30			ns	
Latch pulse fall to shift clock fall time	tLH		30			ns	
Enable setup time	ts		15			ns	
Input signal rise time	tR				50	ns	2
Input signal fall time	tF				50	ns	2
DISPOFF removal time	tSD		100			ns	
DISPOFF "L" pulse width	tWDL		1.2			μs	
Output delay time (1)	tD	C∟ = 15 pF			41	ns	
Output delay time (2)	tPD1, tPD2	C∟ = 15 pF			1.2	μs	
Output delay time (3)	tPD3	C∟ = 15 pF			1.2	μs	

NOTES :

1. Takes the cascade connection into consideration.

2. (twck - twckH - twckL)/2 is maximum in the case of high speed operation.

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Shift clock period	twcĸ	tR, tF \leq 10 ns	82			ns	1
Shift clock "H" pulse width	twcкн		28			ns	
Shift clock "L" pulse width	twckl		28			ns	
Data setup time	tDS		20			ns	
Data hold time	tDH		23			ns	
Latch pulse "H" pulse width	tWLPH		30			ns	
Shift clock rise to latch pulse rise time	tLD		0			ns	
Shift clock fall to latch pulse fall time	tsL		65			ns	
Latch pulse rise to shift clock rise time	tLS		30			ns	
Latch pulse fall to shift clock fall time	tlн		30			ns	
Enable setup time	ts		15			ns	
Input signal rise time	tR				50	ns	2
Input signal fall time	tF				50	ns	2
DISPOFF removal time	tSD		100			ns	
DISPOFF "L" pulse width	tWDL		1.2			μs	
Output delay time (1)	tD	C∟ = 15 pF			57	ns	
Output delay time (2)	tPD1, tPD2	C∟ = 15 pF			1.2	μs	
Output delay time (3)	tPD3	C∟ = 15 pF			1.2	μs	

NOTES :

1. Takes the cascade connection into consideration.

2. (twck - twckh - twckL)/2 is maximum in the case of high speed operation.

Timing Chart of Segment Mode

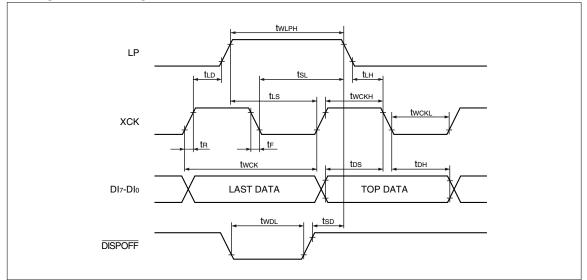


Fig. 6 Timing Characteristics (1)

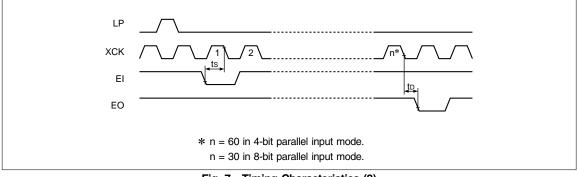
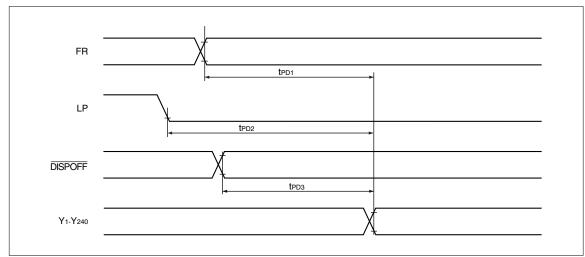
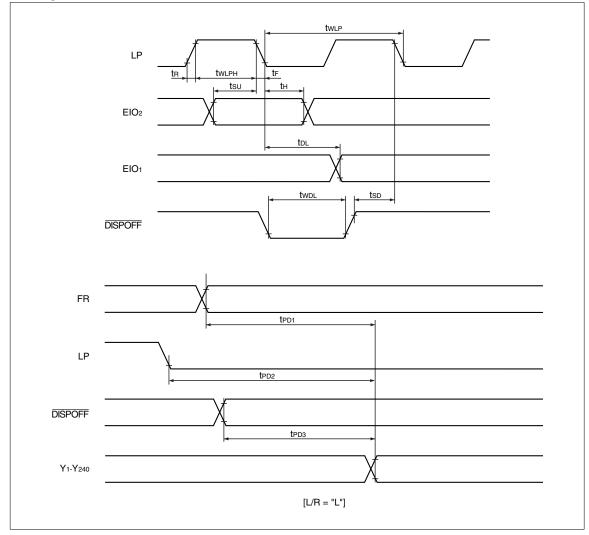
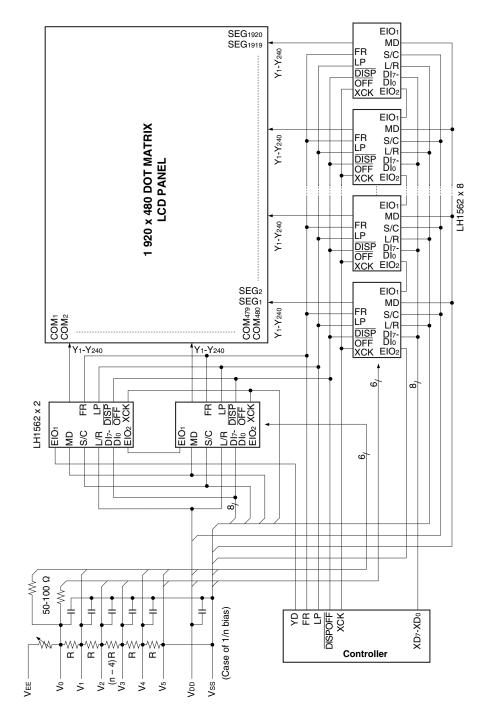


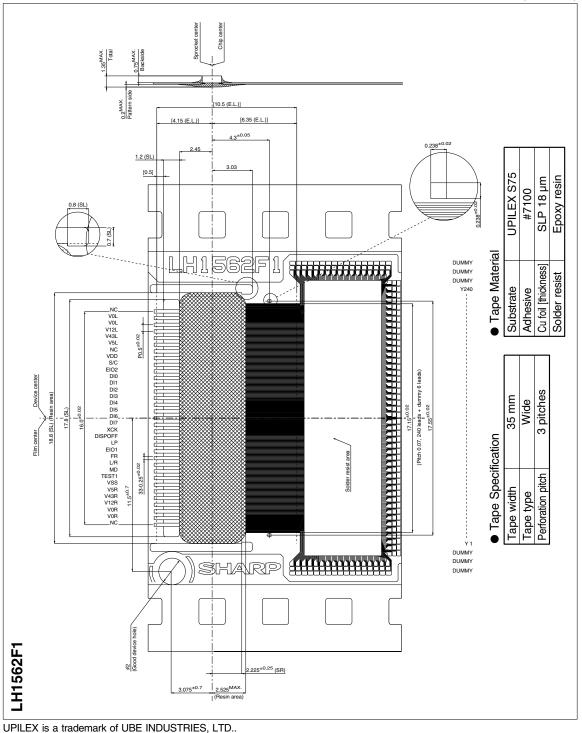
Fig. 7 Timing Characteristics (2)

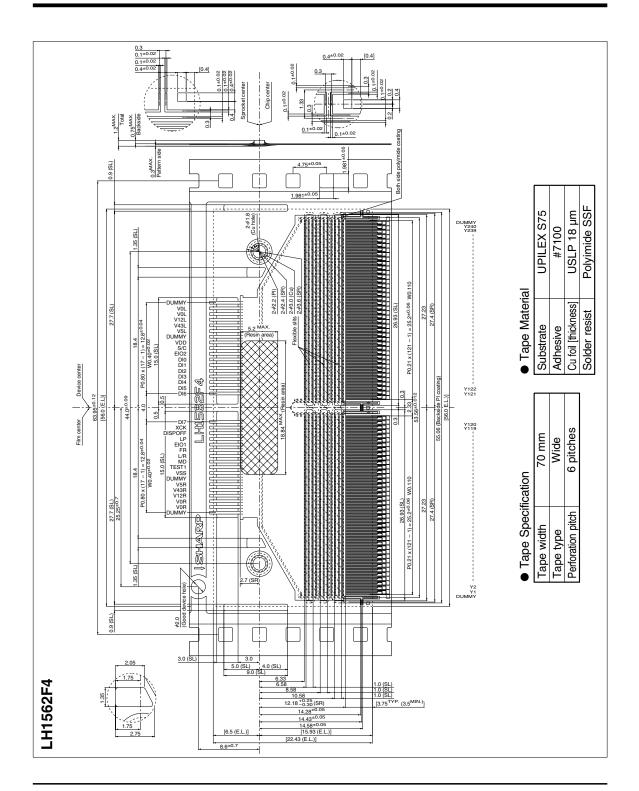




Fig. 8 Timing Characteristics (3)

(Common Mode) (Vss = V5 = 0 V, VDD = +2.5 to +5.5 V, V0 = +15.0 to +42.0 V, TOPR = -20 to +85 °C										
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT				
Shift clock period	twLP	tR, tF ≤ 20 ns	250			ns				
Shift clock "H" pulse width	twlph	$VDD = +5.0 \pm 0.5 V$	15			ns				
	IVVLPH	VDD = +2.5 to +4.5 V	30			ns				
Data setup time	tsu		30			ns				
Data hold time	tн		50			ns				
Input signal rise time	tR				50	ns				
Input signal fall time	tF				50	ns				
DISPOFF removal time	tSD		100			ns				
DISPOFF "L" pulse width	tWDL		1.2			μs				
Output delay time (1)	tDL	CL = 15 pF			200	ns				
Output delay time (2)	tPD1, tPD2	CL = 15 pF			1.2	μs				
Output delay time (3)	tPD3	CL = 15 pF			1.2	μs				

Timing Chart of Common Mode




SYSTEM CONFIGURATION EXAMPLE

PACKAGES

(Unit : mm)

